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1. Comparative Analysis of Movement Vectors in Eye and Arm Movements

Contemporary neural network models provide insights into some of the organizational

principles that govern biological sensory-motor systems, and offer a level of computa-

tional precision that enables sharp comparisons and contrasts to be made between differ-

ent sensory-motor systems. The capacity of these models to clarify, integrate, and predict

behavioral and neural data is predicated upon the coordinated use of theoretical, mathe-

matical, computational and empirical tools in a manner that reveals many more constraints

on brain design than empirical tools alone. No single experimental paradigm in the behav-

ioral and brain sciences provides sufficiently many data to uniquely characterize a neural

system. Interdisciplinary theoretical and empirical approaches that can coordinate and

discover both top-down and bottom-up constraints at multiple levels of behavioral and

neural organization provide a much greater level of guidance towards characterizing brain

designs.

The present chapter takes as its point of departure one important design principle

that has been clarified by such an interdisciplinary approach. This is the principle of

vector encoding that has been described, for example, in both the control of saccadic

eye movements by the superior colliculus-[40, 41, 46, 47, 48, 49] and the control of arm

movements by the motor cortex-[11, 15, 16, 17, 18, 20, 50]. -

Although neural vectors are encoded in both of these systems, they are encoded dif-

ferently in each system. Why do both systems employ a neural code which, in its broad

outline, seems similar, but in its computational realization is grossly different? Models of

saccadic eye movements [28, 29] and of arm movements [3, 4, 5] have been developed in

which these distinct types of vector coding are utilized. The models suggest that the design

constraints which force these differences concern different problems of learning and coordi-

nate transformation that are solved by the eye and arm movement systems. These design

constraints are not, however, immediately evident in the neurophysiological experiments

that discovered the vector codes. This chapter reviews and compares these constraints,
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and suggests experiments that may be used to further test the models.

2. Map Vectors and Difference Vectors

The experiments of Sparks and his colleagues on the deeper layers of monkey superior

colliculus have revealed a type of vector coding that may conveniently be called a vector

map code [471. In such a vector representation, each location in a spatially organized

map encodes a different vector, hence, a different combination of movement length and

direction. The most eccentric locations tend to code the longest movements. Changing the

polar angle of a location tends to change movement direction. Exciting cells at a prescribed

location in the map tends to cause a saccadic eye movement of corresponding length and

direction. Populations of cells are activated under normal behavioral conditions. The eye

movement triggered by such a population has a length and direction that corresponds to

the average length and direction coded by all of the cells in the population.

The experiments of Georgopoulos and his colleagues on monkey motor cortex have

revealed a type of vector encoding that may conveniently be called a vector difference

code [16]. In such a vector representation, each cell tends to generate a broad unimodal

tuning curve of direction preference that may include 1800 of movement directions. Coding

of movement amplitude tends to covary with the firing rate of cells in their direction of

maximal sensitivity. Moreover, changes in the initial position of the arm covary with

changes in the baseline level of cell activity. Thus a vector difference code does not encode

amplitude and direction via different locations in a spatial map.

I now summarize models of eye and arm movement control in which the computation

and design significance of these map vectors and difference vectors are clarified from the

viewpoint of the system's total behavioral competence. 1:]
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3. Vector Integration to Endpoint and GO Signal Modulation in Arm Move-

ment Control

Difference vectors are found in a model of arm trajectory control, called the Vector In-

tegration to Endpoint (VITE) model, that was developed by Bullock and Grossberg [3, 4,

5]. This model predicts how read-out of a target position command, or TPC, that specifies

a desired target position, or motor expectation, is translated into a present position com-

mand, or PPC, that causes a synergy of arm muscles to contract and relax gynchronously

until the PPC equals the TPC. Figure 1 depicts the main variables that are computed by

the VITE circuit.

Figure 1

Before describing these variables, it should be emphasized that such a command circuit

forms only one part of the total neural system needed to control arm movements. For

example, mechanisms for interaction of commands to opponent and synergetic muscles

[3], for planning and timing the sequential readout of TPCs from working memory [28,

29 (chapter 9)], for adaptively linearizing and compensating for the variable gain of a

nonlinear muscle plant [28, 29 (chapter 5)], and for adapting to the inertial properties

generated by variable loads and velocities [6, 7] also form essential parts of the system for

arm movement control.

Figure 1 shows that a TPC is subtracted from a PPC at a network stage at which

a difference vector (DV) is computed. Model DV properties are remarkably similar to

data properties reported by Georgopoulos and his colleagues (Figure 2). In particular, a

large DV may be active without causing an overt movement. Such DV activation, called

motor priming, has been reported by Georgopoulos, Schwartz, and Kettner [20]. The next

stage of the model (Figure 1) computes the product of a DV and a GO signal, or gain

control signal, that controls read-out of the movement command. The product DV x GO

is integrated through time by the subsequent PPC stage. Due to this circuit design, the

3



PPC stage generates a continuous trajectory of synchronous outflow movement commands

that gradually causes the PPC to approach the TPC at a speed that is regulated by the

amplitude of the GO signal.

Figure 2

A large body of behavioral and neural data about arm and speech articulator move-

ments has quantitatively been analysed by comparison with emergent properties of the

VITE model. Here I summarize some neural data that support the existence of a GO

signal, some predictions to further test the circuit's overall design, and a learning problem

from which the circuit was derived.

4. GO Signal Generator in Globus Pallidus

Additional physiological support for the VITE model comes from recent experiments

involving lesions and electrical stimulation of the basal ganglia. Data from a set of ex-

periments by Horak and Anderson [32, 33] are consistent with the interpretation that

the internal segment of the globus pallidus is an in vivo analogue of the VITE model's

GO-signal generator.

An in vivo candidate for a GO-signal generator must pass three tests. First, stimulation

at some site in the proposed pathway must have an effect on the rate of muscle contractions.

Second, it must have this effect without affecting the amplitude of the contractions. Thus

stimulation should have no effect on movement accuracy. Third, this rate-modulating

effect should be nonspecific: it should affect all muscles that are typically synergists for

the movement in question.

The studies conducted by Horak and Anderson [32, 331 addressed these issues. Horak

and Anderson [32] showed that "when neurons in the globus pallidus were destroyed by

injections of kainic acid (KA) during task execution, contralateral arm movement times

(MT) were increased significantly, with little or no change in reaction times (p.290)." This

satisfies the rate criterion. Moreover, the rate of motor recruitment was depressed "in
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all the contralateral muscles studied at the wrist, elbow, shoulder, and back, but there

were no changes in the sequential activation of the muscles (p.20)." This satisfies the non-

specificity criterion. Finally, the authors also noted that "animals displayed no obvious

difficulty in aiming accurately ... they did not miss the 1.5-cm target more often following

KA injections, and there was no noticeable dysmetria around the target (p. 3 00 )." This

satisfies the accuracy criterion.

Horak and Anderson [33] used an electrical stimulation paradigm instead of a lesion

paradigm. They found that "stimulation in the ventrolateral internal segment of tb - globus

pallidus (GPi) or in the ansa lenticularis reduced movement time, whereas stimulation at

many sites in the external pallidal segment (GPe), dorsal (GPi), and putamen increased

movement times for the contralateral arm (p.305)." Once again, these effects were non-

specific: "no somatotopic effects of stimulation were evident. If stimulation at a site

produced slowing, it produced a depression of activity in all the muscles studied. Even

stimulus currents as low as 25 AA affected proximal as well as distal muscles, flexor as well

as extensor muscles, and early- as well as late-occurring activity (p.309)."

In the VITE model, activation of the GO-signal pathway produces movement only

if instatement of a TPC different from the current PPC leads to the computation of

a non-zero DV. In agreement with this property, Horak and Anderson [33] observed that

"stimulation at sites that speeded movements did not induce involuntary muscle activation

in resting animals nor did it change background EMG activity prior to self-generated

activity during task performance (p.313)." In Bullock and Grossberg [3] it was noted that

"very rapid freezing can be achieved by completely inhibiting the GO signal at any point

in the trajectory". This property of the model has also been shown to be a property of

the GP system. In particular, Horak and Anderson reported that "stimulation with 50

or 100 uA at ... sites ventral and medial to typical GPi neuronal activity completely and

immediately halted the monkey's performance in the task (p.315)." Taken together, their

experiments led Horak and Anderson [33] to conclude that "the basal ganglia ... determine
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the speed of the movement" (p.321).

5. Factorization of Position and Velocity Control

The striking correspondence between the experimental results of Georgopoulos et al.

and of Horak and Anderson and the theoretical predictions of the VITE model regarding

separate DV and GO-signal processes is important because it supports the hypothesis

that motor systems, like sensory systems, implement a factorization of pattern and energy

[24, 26, 27]. In the motor system, this factorization means that a movement's velocity

("energy") can be scaled up or down over a wide range without disrupting the movement's

direction or terminal position ("pattern"). A similar hypothesis has recently been advanced

by Eckmiller [9], who models it using a computationally different approach. Moreover,

by using a GO-signal that grows gradually during the movement time, as in Figure 4,

all synergists will complete their contractions at approximately the same time even if

movement onset times of different synergists are staggered by a large amount [3]. These

properties of the model, together with the growing evidence for separate DV and GO-signal

pathways in vivo, provide a basis for understanding how primates can achieve space-time

equifinality-all synergists reaching their length targets at equal times-yet retain separate

control of velocity and position. Note that rate-control models relying on static stiffness

adjustments (e.g., [8]) lack the critical temporal-equifinality property.

6. Amplification of Peak Velocity and a GO Signal Test

Several other important automatic compensatory properties emerge from interactions

between the DV and GO processes. Bullock and Grossberg [3] noted that in addition

to compensating for muscles that begin to contract at staggered onset times, the VITE

circuit automatically compensates for changes of target position during the movement

time. In particular, it was shown that the model generates the amplification of peak

velocity that occurs during target-switching experiments [19]. Such a velocity amplification

facilitates reaching the target after an incorrect initial TPC is replaced by an updated TPC.
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This speed-up occurs "on-the-fly." It is not preprogrammed, but is rather an automatic

emergent property of VITE circuit interactions. It is caused as follows.

First there is a rapid change in the TPC and thus in the DV. Then a more gradual

change occurs in the DV and the PPC as the PPC integrates the DV through time. The

velocity amplification is predicted to be caused by interaction of the new DV with the GO

signal that was activated by the previous movement command. This prediction can be

physiologically tested using an experiment that would also provide another opportunity to

test if the Horak-Anderson cells in globus pallidus generate GO signals. Such a test would

directly stimulate, at increasing levels of intensity, Horak-Anderson cells during a target

switching task. Observed changes in movement velocity could then be used to calibrate

the amount of change in GO signal amplitude caused by each level of stimulation.

7. Prediction and Test of Cells that Multiplex a Code for Local -. !ocity

The property of motor priming in motor cortex supports the VITE circuit prediction

that there exists a stage subsequent to the DV stage at which an overt movement command

is activated. The data of Horak and Anderson [32, 33] support the prediction that such

activation may be partially controlled by a GO signal from the globus pallidus.

The VITE model may be further tested by recording from cells at the stage to which

the motor cortex vector cells of Georgopoulos project. The cells at this subsequent stage

should compute a measure of local movement velocity. This can be seen as follows.

These cells are predicted to compute (Figure 1) the product of rectified difference

vector [VI+ = max(V, 0) and GO signal G, namely

[V]+C. (1)

The subsequent PPC stage computes a present position command P that performs a time

integral of [V]+G, namely

P(t) = fJ[V]+Gdt. (2)
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Differentiating (2) shows that
dPdt -[VI+G".3

If subsequent network mechanisms cause the arm to follow closely the outflow movement

command P(t), then dP in (3) provides a good estimate of local movement velocity.

Equation (3) is of great interest from a conceptual point of view. It shows that the

quantity [V]+G, which itself does not explicitly compute a velocity signal, becomes a

velocity signal because of the manner in which it is transformed at subsequent network

stages, in particular because it is integrated through time at the PPC stage.

The definition of this local velocity signal also depends upon the existence of a feedback

loop between successive network stages (Figure 3). This feedback loop is needed to generate

movements that are goal-oriented. This feedback loop is defined as follows. Quantity V in

(3) computes a time-average of the difference between P and T, as in

dV = a (-V + T- P). (4)

For simplicity, consider the case when the averaging rate a is large. Then, by (4),

V 5- - P. (5)

Hence, by (3) and (5),

S[T - Pj+G,

which summarizes the action of the feedback loop.

The approximate equation (6) shows that the local velocity signal is an emergent

property of the entire network. It multiplexes quantities T, P, and G that are computed

at three different network stages. It converts these quantities into a local velocity signal

by using the feedback loop that exists between the DV stage and the PPC stage.

Given the motor cortical vector cells as an anatomical marker, it seems to be an

experiment of great conceptual importance to test the existence of cells that code local
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velocity at one of their target nuclei. If the stage coding local velocity is found, then

a retrograde marker applied at this stage may identify a location in, or near, the global

pallidus. Then a direct neurophysiological test of the existence of a GO signal may be made

to supplement the data of Horak and Anderson [32, 33]. If globus pallidus cells are not

marked, then this experiment may discover the true location of the GO signal generator.

An anterograde marker applied at the local velocity stage may be used to discover the

location of the PPC stage. Then a direct neurophysiological test can determine its ability

to time-integrate local velocity signals.

8. Learning an Associate Map between Target Position Maps of the Eye-Head

and Hand-Arm Movement Systems

Our theory suggests that the VITE circuit plays two distinct roles. One role, reviewed

above, concerns trajectory formation within a sensory-motor system. This role may be

called intramodal trajectory formation. The second role concerns intermodal learning of

target position maps. This latter role is schematized by Figure 3. The remarkable fact is

that the same TPC, DV, and PPC stages are predicted to accomplish both roles.

Figure 3

The learning process transforms stored representations of a target position coded with

respect to the eye-head system into a target position command of the hand-arm system

for moving the arm, via VITE dynamics, to that position in space.

This mapping process is of critical importance in sensory-motor control because many

arm movements are activated in response to visually seen objects that the individual wishes

to grasp. This transformation must be learned because, as the arm grows, the motor

commands which move it to a fixed position in space with respect to the body must also

change in an adaptive fashion. Our central problem is thus formulated as follows: How is

a transformation learned and adaptively modified between the parameters of the eye-head

system and the hand-arm system so that an observer can touch a visually fixated object?



Following Piaget's [44] analysis of circular reactions, imagine that an infant's hand

makes a series of unconditional movements, which the infant's eyes unconditionally fol-

low. As the hand occupies a variety of positions that the eye fixates, a transformation is

learned from the parameters of the hand-arm system to the parameters of the eye-head

system. A reverse transformation is also learned from parameters of the eye-head system

to parameters of the hand-arm system This reverse transformation enables an observer

to intentionally move its hand to a visually fixated position.

Not all positions that the eye-head system or the hand-arm system assume are the

correct positions to associate through learning. For example, suppose that the hand briefly

remains at a given position and that the eye moves to foveate the hand. An infinite number

of positions are assumed by the eye as it moves to foveate the hand. Only the final,

intended, or expected position of the eye-head system is a correct position to associate

with the position of the hand-arm system.

Learning of an intermodal motor map must thus be prevented except when the eye-

head system and the hand-arm system are near their intended positions. Otherwise, all

possible positions of the two systems could be associated with each other, which would

lead to behaviorally chaotic consequences. Several important conclusions follow from this

observation [3, 26, 281:

(1) All such adaptive sensory-motor systems compute a representation of target posi-

tion. This representation is the TPC.

(2) All such adaptive sensory-motor systems also compute a representation of present

position. This representation is the PPC.

(3) During movement, target position is matched against present position. Intermodal

map learning is prevented except when target position approximately matches present

position, that is, except when the DV is small (Figure 3). A learning gate, or modulator,

signal is thus controlled by the DV. This gating signal enables learning to occur when a
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good match occurs and prevents learning from occurring when a bad match occurs.

In summary, we trace the existence of vector difference codes to two fundamental

computational problems: intermodal learning of target position transformations, and in-

tramodal performance of synchronous trajectories within dynamically determined motor

synergies.

9. Visually Reactive Movements and the Vector Map Code within Superior

Colliculus

The type of vector map code described by Sparks and his colleagues may be analysed

as part of a circuit design that realizes a different type of learning process. This learning

process enables the visually reactive movement uystem to generate accurate reactive eye

movements in response to flashing or moving lights on the retina [28, 29 (chapters 2, 3, and

11)]. The role of map vectors in the visually reactive movement system has been analysed

as part of a developmental sequence during which reactive eye movements to flashing or

moving lights on the retina are supplemented by attentionally mediated movements to-

wards motivationally interesting sensory cues. These movements are supplemented oncc

again by predictive eye movements that form part of planned sequences of complex move-

ment synergies capable of ignoring the sensory substrate on which they are built. Each

of these categories of eye movement requires one or more types of learning in order to

achieve high accuracy. The movement systems wherein attention and intention play an

increasingly important role base their adaptive success upon the prior learning of the more

primitive, visually reactive types of movement.

10. Three Interacting Coordinate Systems: Retinotopic, Motor Sector, and

Map Vector

The visually reactive movement system uses learning based upon visual error signals

to improve the accuracy of its movements. It is assumed that a target light is chosen and

stored in short term memory (STM) before a movement starts (Figure 4). This stored
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representation activates a movement along an u'conditioned movement pathway. The

movement amplitude and direction, before learnii %, are controlled by a transformation

of the retinal location of the stored representation into a motor representation in which

the most eccentric positions generate the largest movement signals. This is accomplished

by decomposing the motor representation into hemifields (Figure 5), and assuming that

the gradient of connections to the corresponding pairs of agonist and antagonist muscles

increases with eccentricity [10, 14, 21].

?"igure 4

Figure 5

The target light is stored in STM so thb it it can benefit from a visual error signal

after the movement terminates. The stored representation samples this visual error signal

along a conditioned movement pathway (Figur' 4) whose output summates with that of

the unconditioned pathway to generate the total movement signal. Thus learning within

this system controls a feedforward adaptive gain that is changed by visual error signals.

How these visual error signals are coded clarifies one aspect of why a vector map exists

in the deeper layers of superior colliculus. As illustrated by Figure 4, each light plays two

roles: it acts as a movement signal for the next movement, and an error signal for the

last movement. Thus the retinal location of each light must be remapped into a type of

motor coordinates that can correct the full range of typical movement errors. The theory

suggests that this is accomplished as follows.

11. Automatic Gain Control of Movement Commands by Visual Error Signals:

Cerebellar Learning

The theory predicts how each movement command pathway can individually benefit

from visual error signals to generate a more accurate movement in the future. Its analysis

leads to a model of learning by the cerebellum which extends earlier models of cerebellar

learning [1, 2, 12, 13, 22, 23, 25, 34, 35, 39, 421. I emphasize two key properties of this
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model herein: (i) the dual action of each light; and (ii) the learning of a motor synergy.

The previous section summarized the network anatomy that subserves the dual action

property.

12. Learning a Motor Synergy: Opponent Processing of Error Signals

The second key property of the AG stage concerns its ability to convert visual error

signals, which individually activate only a aingle retinal position, into correct and syn-

chronous movement commands to all muscles which move the eye. Learning of a motor

synergy takes place in the Adaptive Gain Stage, or AG stage (Figure 4). The AG stage is

identified with the cerebellar vermis, based upon data which show that this brain region

controls modification of a saccade's pulse gain [43]. The conditioned movement pathway

generates sampling signals which pass through the AG stage and add or subtract a condi-

tionable movement signal to the total movement command. An error signal acts to change

the size, or gain, of the conditionable movement signal. Thus the AG stage is a region

where automatic gain control of the total movement command takes place.

In order to learn a motor synergy, the system preprocesses the error signals before

they can be sampled by the conditioned movement pathway. Two processing constraints

conceptualize these preprocessing stages: (a) the Opponent Processing constraint, and (b)

the Equal Access constraint. The need for Opponent Processing-which is a new feature

of our model-can be seen as follows.

Each eye is moved by three pairs of agonist and antagonist muscles. One pair moves the

eye horizontally. The other two pairs move the eye obliquely, and together can generate

vertical movements. I now indicate why an increase in the gain of an agonist muscle

command must generate a decrease in the gain of the corresponding antagonist muscle

command, and conversely. In other words, each visual error signal has antagonistic, or

opponent, effects on the conditionable gains of the muscle commands which it changes.

In order to realize the Opponent Processing constraint, suppose that the retina is to-
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pographically transformed from retinotopic coordinates into a motor map containing six

sectors (Figure 6a). This motor sector map is a-i idealization that may be compared to

the data of Sparks and his colleagues. Each pair of agonist-antagonist muscles-f(a+, a-),

(13+,1-), (y/+,.-)-is represented by opposite sectors in the sector map. A visual error

signal which falls within a prescribed sector increases the conditioned gain of the cor-

responding muscle and decreases the conditioned gain of the antagonistic muscle. This

type of retinal-to-motor transformation can be used to correct undershoot, overshoot, and

skewed movement errors as follows.

Figure 6

Suppose that a light activates the retinal position labelled 1 in Figure 6b and thereby

causes a saccade. Suppose that, after movement, the light activates position 2. Such a

movement defines an undershoot error: the eye does not move far enough toward the right

to foveate the light. If the error signal increases the gain of muscle 0+ and decreases the

gain of muscle 3-, then the eye will move further toward the right the next time that

position 1 is activated, thereby tending to correct the undershoot error.

The need for opponent processing can be seen by considering the case of an overshoot

error in Figure 6c. Here a light to position 1 moves the eye in such a way that the

error signal activates a position 2 on the opposite side of the fovea. In other words, the

eye moves too far to the right. Due to opponent processing, the error signal increases

the gain of muscle #- and decreases the gain of muscle #+, thereby tending to correct

the overshoot error the next time position 1 is activated. A similar analysis shows how

opponent processing of error signals corrects skewed errors, as in Figure 6d.

13. The Equal Access Constraint

Figure 6 emphasizes the fact that, before learning occurs, a light to a fixed retinal

position (1) can cause undershoot, overshoot, or skewed errors. The system cannot a priori

predict which type of error will occur as a result of its inadequately tuned parameters. In
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order to correct any possible error, each positio. must be able to activate a conditioned

movement pathway that is capable of sampling error signals delivered to any of the motor

sectors. This is the Equal Access constraint, which was first articulated in a formal model

of cerebellar learning by Grossberg [22, 23).

In order to realize the Equal Access constraint, we have assumed [28, 29 (chapter 3)]

that the motor sectors are mapped, via a complex logarithmic map [45], into motor strips

(Figure 7). Then a single conditioned movement pathway can sample gain changes due

to error signals which activate any motor strip. Figure 8 describes two variants of this

design. Each variant realizes both the Opponent Processing constraint and the Equal

Access constraint. Fujita [141 has also used the complex log map in his work on saccadic

eye movements.

Figure 7

Figure 8

The by now classical cerebellar interpretation of this anatomy is that the sampling

signals are carried by parallel fibers through the dendrites of Purkinje cells, whereas the

error signals are carried by climbing fibers to the Purkinje cell dendrites [1, 22, 23, 25, 34,

35, 39].

In summary, visual error signals are mapped from retinotopic coordinates into motor

sector coordinates and then into motor strip coordinates, so that they can all be sampled by

individual movement commands within pathways capable of reading-out the conditioned

gain signals to the appropriate target muscles. Such a transformation provides a simple

explanation of the type of vector map described by Sparks: An increase in map eccentricity

increases movement length and a change in map polar angle changes movement direction

because such a representation enables visual error signals to be mapped into motor com-

mands that are capable of correcting undershoot, overshoot, and skewed errors in visually

reactive movements.

15



14. The Vector-to-Sector Transform: Dimensional Consistency of Planned Vec-

tors and Reactive Retinotopic Commands

It remains to discuss why the deeper layers of superior colliculus code movement vec-

tors, rather than merely motorically transformed retinotopic commands. An analysis of

this problem is spread over several chapters of Grossberg and Kuperstein [28, 29 (chapters

3, 4, 6, 10, 11)]. Here I outline some of the main design themes.

Perhaps the most salient issue concerns the apparent absurdity of using vector encoding

when the problem is considered from a common-sense point of view. In order to compute

a vector, the retinotopic location R of a light must be combined with the initial position

E of the eye in the head to generate a target position T of the light in head coordinates.

Let us symbolically represent this transformation by

T = R + (7)

Then a vector V is computed by subtracting E from T:

V =T-E. (8)

On the other hand, the eye moves in the head. Thus, all motor commands M must be

recoded into head-coordinates again before activating the saccade generator that moves

the eye:

M=V+E. (9)

A comparison of equations (7)-(9) seems to suggest much ado about nothing, because (7)

implies that

R = T - E, (10)

so that M could have been derived directly from T without computing V at all!

The functional significance of these transformations is clarified by noting that vector

coordinates V are consistent with retinotopic coordinates R, but head coordinates, T
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and M, are not. Visual error signals within the visually reactive movement system are

retinotopically coded before being remapped into a retinally consistent motor sector map.

In order for head-centered, attentive, planned movement commands T to benefit from the

movement accuracy that is learned using visual error signals, they must be transformed

into a retinally consistent coordinate system. Comparison of (8) and (9) illustrates that

movement vectors V (of the type studied by Georgopoulos!) are consistent with retinal

and motor sector coordinates. Thus the head commands T are transformed into vectors V

so that the vectors V can be transformed into a motor sector code. In this way, attentive,

planned movements can achieve the learned accuracy of visually reactive movements. This

vector-to-sector transformation converts the motor sector map into a vector map.

15. Movement Gating, Intermodal Mapping, and Competition between Plan-

ned and Reactive Movements

The vector-to-sector transform is a learned transformation. Our model of how this

learning process occurs [28 (chapter 11)] clarifies how vectors V can learn to control the

movement pathways activated by a retinal position R during visually reactive movements

when the vector V is derived from R, and thus V = R. The model also predicts how, after

learning is over, a visually reactive movement to position R can be suppressed via a spa-

tially organized competitive interaction (cf. [14]) when an intended movement command

V is activated such that V 6 R. Despite this suppression, the model explains how the

movement controlled by V achieves the accuracy derived from the cerebellar gains learned

by visually reactive error signals. The analysis also suggests how auditory signals [36, 37,

47] and planned movement sequences [381 can activate accurate saccadic eye movements,

and how inhibitory gating of superior colliculus by substantia nigra enables planned at-

tentive movement commands to successfully compete with more rapidly processed reactive

movement commands (30, 31].

17



16. Summary

This chapter clarifies the functional role played by two types of vector codes-vector

map codes and vector difference codes-in the control of saccadic eye movements by the

superior colliculus and the control of planned arm movements by the motor cortex, re-

spectively. Vector difference codes form part of a neural network model, called the Vector

Integration to Endpoint (VITE) Model, that converts a target position command into a

series of continuously integrated present position commands which are capable of generat-

ing a synchronous arm movement trajectory. The different vectors are converted into overt

movement commands by a gain control signal, called the GO signal, whose generator may

be in globus pallidus. Experiments concerning how to discover predicted cells coding local

velocity, GO signal, and present position commands are suggested. The VITE circuit is

also predicted to play a role in modulating the learning of transformations from parietal

target position representations of the eye-head system to target position commands of the

hand-arm system.

The vector map codes are suggested to arise due to the interaction of several subsystems

of the saccadic eye movement system. A visually reactive movement system uses visual

error signals to correct motor synergies that are activated by visual signals. To accomplish

this visual-to-motor learning process, the visual error signals are recoded into a motor

sector map. An analysis of how movement errors are corrected by this system suggests a

refined model of cerebellar learning, notably learning in the cerebellar vermis.

In order for the planned and attentive saccadic eye movement subsystems to benefit

from visually reactive learninig, they code their movement commands into vectors which

are dimensionally compatible with the motor sector code, and then transform the vectors

into the motor sector code. This vector-to-sector transformation converts the motor sector

code into the type of vector map found in the deeper layers of superior colliculus. The

properties of this transformation clarify how auditory signals and planned, attentive move-

ment sequences may benefit from learning within the visually reactive movement system,
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and how gating of superior colliculus by substantia nigra enables the competition between

these several movement systems to be successfully completed.
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FIGURE CAPTIONS

Figure 1. Main variables of the VITE circuit: T = target position command, V

difference vector, G = GO signal, P = present position command. The circuit does not

include the opponent interactions that exist between the VG and P stages of agonist and

antagonist muscle commands.

Figure 2. Data and simulation of vector cell through time: (a) Quick buildup and gradual

decline of activity in motor cortex vector cells. (Reprinted with permission from [191.) (b)

Computer simulation of the model variables V, G, and P in response to a step increment in

T. Note the similarity between the graph of V and the vector cell profile in (a). (Reprinted

with permission from [3].)

Figure 3. Learning of intermodal transformation between target position representations

is gated by the difference vector DV. This gate helps to prevent incorrect associations from

being learned between eye-head TPCs and hand-arm TPCs during motor development.

(Reprinted with permission from [3].)

Figure 4. A target light position is chosen for storage in short term memory (STM)

before a movement. Its stored representation activates parallel movement command path-

ways. The unconditioned pathway generates a movement that may be inaccurate. The

conditioned pathway reads-out an adaptive gain control signal whose size may be altered

by learning. Learning occurs at an adaptive gain (AG) stage whose design is compared

with cerebellar architecture. Learning is driven by a visual error signal that is activated,

after the movement terminates, by the location of a newly chosen target light with respect

to the fovea.

Figure 5. The retinotopically coded location of a stored target light is recoded into a

motor map that is divided into hemifields. More eccentric locations in each hemifield
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generate larger excitatory and inhibitory movement signals to the corresponding agonist

and antagonist muscles, respectively. Opposite hemifields send opponent signals to each

other's agonist muscles. When all three pairs of hemifield maps that move an eye are

joined together, they give rise to a motor sector map (Figure 6).

Figure 8. Transformation of retinally registered visual movement commands into a motor

sector map that can be used to correct visually reactive movement commands. (a) Retinal

surface is transformed into motor sectors corresponding to agonist muscles WQ+,/3+, .+)

and antagonist muscles (Ca-, #-, -) of one eye. The text describes how the sectors convert

retinotopic locations of visual movement signals and visual error signals into learned move-

ment gain changes at the AG stage. In (b)-(d), number 1 designates the retinal position of

the target light that is stored in STM and causes the movement. Number 2 designates the

retinal position of the target light, after the movement terminates, that acts as an error

signal. The motor sector map determines which muscle movement gains will be changed

by the error signal. The sharp boundaries of the motor sector map are an idealization

of partially overlapping motor sector regions. (b) A saccadic undershoot error. (c) An

overshoot error. (d) A skewed undershoot error. (Reprinted with permission from [28].)

Figure 7. Logarithmic map from sensory sectors into motor strips: Each sensory hemifield

(a+, P+, -y+) and (-, #-, -) maps into a row of parallel motor strips. In this fractured

somatotopy, the strips of agonist-antagonist pairs (a+, a-), (/+, f-), and (-y+, "-y) are

juxtaposed, much as in the case of ocular dominance columns in the striate cortex. A

pair of motor strip maps is depicted, one in each AG stage hemisphere. Outputs from

all agonist-antagonist pairs compete before the net outputs perturb the saccade generator.

This circuit works even if only agonist muscles (a+, +,+) receive excitatory error signals

in one hemifield and antagonist muscles (a-, /-, -) receive excitatory error signals in

the other hemifield." An excitatory error signal to the a+ strip can weaken the net a-

output of the contiguous strip via competition of the outputs, but cannot strengthen the
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a- output signal. An excitatory error signal to the a- strip of the other hemifield can

strengthen the net a- output. (Reprinted with permission from [281.)

Figure 8. Two ways to achieve opponent conditioning of agonist-antagonist muscles: (a)

An error signal increases the conditioned gain at the agonist muscle strip and decreases

the conditioned gain at the antagonist muscle strip; (b) An error signal increases the

conditioned gain at the agonist muscle strip. Competition between agonist and antagonist

muscle strip outputs causes the decrease in the net antagonist output. (Reprinted with

permission from [281.)
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